文章编号: 0253-2239(2009)10-2914-06

一维光子晶体缺陷模的滤波特性及应用研究

王济洲 熊玉卿 王多书 陈 焘 刘宏开

(兰州物理研究所 表面工程技术国家级重点实验室,甘肃 兰州 730000)

摘要 研究了一维光子晶体缺陷膜的滤波特性,重点研究了影响其滤波特性的因素及其影响规律。并对利用一维 光子晶体技术开展多通道滤光片设计的可行性进行了研究。结果表明,利用光子晶体的滤波特性,可以设计出传 统光学薄膜设计方法难以实现的多通道窄带滤光片,并根据实际需要,设计了一种双通道窄带滤光片。 关键词 光学设计;一维光子晶体;滤光片;光学薄膜;缺陷模 中图分类号 O4728 **文献标识码** A **doi**: 10.3788/AOS20092910.2914

Filtering Characteristics and Application of Defect Mode of One-Dimensional Photonic Crystal

Wang Jizhou Xiong Yuqing Wang Duoshu Chen Tao Liu Hongkai

(State Key Laboratory of Surface Engineering, Lanzhou Institute of Physics, Lanzhou, Gansu 730000, China)

Abstract The filtering characteristics of one-dimensional photonic crystal with defect mode was studied in detail, and the relevant influencing factors and rules have been emphasized. At the same time the possibility of designing multi-channel narrow band-pass filters using photonic crystals was demonstrated, the results show that it is possible to design multi-channel narrow filters using one-dimension photonic crystals. Finally a dual-channel narrow band-pass filter satisfying actual demand is designed and prepared.

Key words optical design; one-dimension photonic crystal; filter; optical film; defect mode

1 引 言

光子晶体(Photonic crystal)是一种折射率在波 长量级上呈现周期性变化的介质材料^[1]。按照其折 射率变化的周期性可以分为一维、二维和三维光子 晶体。光子晶体的概念首先是在 1987 年由 E. Yablonovitch^[2]和 S. John^[3]在讨论周期性电介质结 构对材料中光传播行为的影响时,各自独立地提出 的。光子晶体被视为电子晶体在光学领域的对应 物,其特性是在其内部具有光子能量和频率禁带,处 于禁带区域的光子被禁止传播。光子在这种结构中 的行为类似于半导体中的电子,光子晶体的这种结 构被称为光子带隙。

一维光子晶体是一种由介电常数周期变化的介

质所构成的人工微结构材料^[1]。其周期为光的波长 量级,基本模型为(AB)",其中A和B分别为不同 介电常数的介质。当光子晶体结构中存在缺陷(所 谓的局域态)时,其能带结构中出现缺陷,一定频率 的光子能透过,这就是光子晶体的局域态特性^[4]。 研究表明,随缺陷个数的不同,光子晶体将出现不同 个数的局域态。

光是一种电磁波,具有波粒二象性。传统的滤 光片设计主要是利用光的波动性中的干涉效应进行 的,对于窄带滤光片来说,一般设计的膜系比较复 杂,给实际的镀制带来很大的困难。由于光子晶体 缺陷态特性的存在,使其可能在窄带滤光片的设计 中得到应用^[5,6]。研究光子晶体在滤光片设计中的

收稿日期: 2008-09-03; 收到修改稿日期: 2009-02-09

基金项目:表面工程技术国家级重点实验室基金(9140C540102060C5401)和航天科技集团公司创新基金(SDSYS-510-1) 资助课题。

作者简介:王济洲(1980—),男,博士研究生,主要从事光学薄膜方面的研究。E-mail: wangjizhou80@163.com

导师简介: 熊玉卿(1969—),男,博士,研究员,主要从事光学薄膜方面的研究。E-mail: xiongyq@hotmail.com(通信联系人)

应用具有实际意义。

本文首先研究了一维光子晶体缺陷模的滤波特 性,并根据实际要求,运用光子晶体技术进行了多通 道滤光片的设计研究,得到了光子晶体在滤光片设 计中的一些规律,并设计制作了星载铷原子钟使用 的双通道滤光片。

2 理论基础

光子晶体的带隙可以采用传输矩阵法[7] (TMM)和时域有限差分法(FDTD)^[8]来计算,本文 采用传输矩阵法研究光子晶体的带隙结构,介质层 与光波的相互作用可由其特征矩阵完全决定,考虑 TE模,单层介质的特征矩阵为^[9]

$$\boldsymbol{M}(Z) = \begin{bmatrix} \cos \sigma & -\sin \sigma/\eta \\ -i\eta \sin \sigma & \cos \sigma \end{bmatrix}, \quad (1)$$

其中 $\sigma = k_0 z \sqrt{\epsilon} \cos \theta$, $\eta = \sqrt{\epsilon/\mu} \cos \theta$, θ 为光波的入 射角, ε, μ分别为介质的介电常数和磁导率。

对于一维周期性结构的情况,可以逐层应用(1) 式,进而可写出多层介质特征矩阵为

$$M(z) = M_{1}(z_{1})M_{2}(z_{2}-z_{1})\cdots M_{N}(z_{N}-z_{N-1}) = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix},$$
(2)

因此可以得到一维周期结构的场矢量

$$\begin{bmatrix} E_0 \\ H_0 \end{bmatrix} = \boldsymbol{M}(\boldsymbol{z}) \begin{bmatrix} E_{N+1} \\ H_{N+1} \end{bmatrix}.$$
 (3)

传输矩阵法同样适用于一维光子晶体的光学传 输特性研究^[10]。以二元一维光子晶体为例,如图1 所示。基本周期为d,第一种材料的物理厚度为a, 第二种材料的物理厚度为b,d = a + b,则可知基本 周期的特征矩阵为

$$\mathbf{M}(d) = \begin{bmatrix} \cos \sigma_a & -\operatorname{isin} \sigma_a / \eta_a \\ -\operatorname{i} \eta_a \sin \sigma_a & \cos \sigma_a \end{bmatrix} \begin{bmatrix} \cos \sigma_b & -\operatorname{isin} \sigma_b / \eta_b \\ -\operatorname{i} \eta_b \sin \sigma_b & \cos \sigma_b \end{bmatrix}.$$
(4)

根据布洛赫(Bloch) 定理可得出,在光波正入射时 $(\theta = 0)$,完整一维周期结构的光子能带模型的色散 关系如下

$$\cos kd = \cos \sigma_a \cos \sigma_b - \frac{1}{2} \left(\frac{\eta_a}{\eta_b} + \frac{\eta_b}{\eta_a} \right) \sin \sigma_a \sin \sigma_b ,$$
(5)

式中
$$\sigma_a = -\frac{\omega}{c} a \sqrt{\varepsilon_a}$$
, $\sigma_b = -\frac{\omega}{c} b \sqrt{\varepsilon_b}$,
 $\eta_a = \sqrt{\varepsilon_0 \varepsilon_a} / \sqrt{\mu_0}$, $\eta_b = \sqrt{\varepsilon_0 \varepsilon_b} / \sqrt{\mu_0}$ 。
 $k \in Bloch 波数^{[11]}$,当 $k = 4$ 实数解时,表示该波

长的光波能够在晶体中传播,就是所说的通带;若波 数 k 为复数解时,表示该波长的光波将被禁止在晶 体中传输,就是所说的禁带。这就是一维光子晶体 的带隙特性,通带和禁带在光学性能中就分别体现 为高透和高反的特性。

Fig. 1 Sketch of one-dimensional photonic crystal

当光子晶体中存在缺陷时,构成光子晶体的缺 陷模,缺陷模只是对完整周期结构的轻微偏离,因此 仍可采用 Bloch 定理^[12,13]。理论验证当存在缺陷模 时,在禁带中出现缺陷态,使得某些频率的光子能够 透过光子晶体。

一维光子晶体缺陷模的滤波特性研究 3

一维光子晶体缺陷模是对完整的晶格周期轻微 的偏离,对于这种微弱的不完整性,光子能带模型仍 然有效,但是需要进行细微的修正^[12]。

为了便于研究这种具有复杂结构的光子晶体,将 其分解成几个部分进行分析是一种有效的方法。其 中的每一个部分可以用传输矩阵进行计算分析。如 图 2 所示带有缺陷模的光子晶体可以将其分解为具 有 N_1 个周期的 PC_1 ,缺陷层 defect,和具有 N_2 个周 期的 PC₂ 进行分析,该结构的传输矩阵可以表述为

$$T = T_{one-period}^{N_1} \times T_{defecct} \times T_{one-period}^{N_2}$$

缺陷模只是对完整周期结构的轻微偏离,因此 Bloch 定理仍然有效,即

 $E(z+Na) = E(z)e^{ikNa}$ 仍然成立。其中 N = $N_1 + N_2 + 1$.

由矩阵特征值定理可得

$$\cos(kNa) = \frac{1}{2}(T_{11} + T_{22})$$

则波数 $k = \cos^{-1} \left[\frac{1}{2} (T_{11} + T_{22}) \right] / Na$

根据光子晶体的带隙特征,我们可以利用其缺 陷态的存在进行滤光片的设计。选用的材料为光学 薄膜设计中在可见光部分常用的两种材料:高折射 率材料 H 为 TiO₂,低折射率材料 L 为 MgF₂。膜系 的基本结构为(HL)^N。

图 2 一维光子晶体的缺陷结构图

Fig. 2 Defect structure of one dimensional photonic crystal

3.1 单通道滤波特性研究

3.1.1 截止特性随周期数 N 的变化规律

计算了周期数 N 取不同数值时光子晶体的滤波 特性,如图 3 所示。结果表明,光子晶体的截止深度 随着 N 的增大而变大,但截止宽度几乎不发生变化。

图 3 周期数 N 取不同数值时的光谱曲线 Fig. 3 Optical performance of photonic crystal with different number of period N

3.1.2 缺陷层厚度对光谱特性的影响研究 基本膜系为(HL)^N mL(HL)^N,周期数 N=6,

缺陷层厚度 m 取不同的数值。当 m 小于 1 时,光谱 特性如图 4 和图 5 所示。当 m 大于 1 时,光谱特性 如图 6 所示。

Fig. 5 Optical performance of photonic crystal with number of period N equals to 6 and defect layer thickness m equals to different value less than 1

图 6 周期数 N=6,缺陷层厚度 m 大于 1.0 且取 不同数值的光谱曲线

Fig. 6 Optical performance with N equals to 6 and different m bigger than 1.0

由图 5 和图 6 可知,随着缺陷层厚度的变化,对 应的缺陷态逐渐向长波方向移动,当 m 取很大数值 时也一样。移动规律是,缺陷态随着缺陷层厚度的 增加,透射峰逐渐向长波方向移动,且呈周期性,周 期是对应中心波长的光学厚度的 1/2;当厚度很大时,将会出现多个峰。

3.2 双通道滤波特性研究

本文所说的双通道是指存在两个缺陷层时,将 会明显出现两个透射峰。基本膜系为 $(HL)^{M_1}$ $xL(HL)^{N_y}L(HL)^{M_2}$ 。

3.2.1 中间周期的周期数 N 的取值对光谱特性的 影响

当第一周期数 M_1 和第三周期数 M_2 相同时,取 $M_1 = M_2 = 6$,缺陷层厚度值x = y = 1,中间周期数分 别为N = 2,3,5,6,7的光谱曲线如图7所示。可 见, $M_1 = M_2$,且取值一定时,两个透射峰随着N值 的增大而向中心波长靠拢,两透射峰的间隔逐渐变 小;透射率的变化规律是,低于中心波长的峰值随 N值的增大向中心波长靠近的过程中逐渐增大,而 高于中心波长的峰值几乎不变。

3.2.2 缺陷层厚度 x 和 y 的取值对光谱特性的影响

当第一周期数 M_1 和第三周期数 M_2 相等时,且 与中间周期数 N 的值都一定,x = y时,图 8 表示的 是 x 和 y 的值分别取 $x_1 = 0.5, x_2 = 0.8, x_3 = 1.0,$ $x_4 = 1.3, x_5 = 1.4$ 时的光谱曲线。可见透射双峰随 着数值的增大两个峰同时向长波方向移动,而透射 率几乎不变。在短波区域峰值随厚度的增加逐渐增 大,而大于中心波长的区域,峰值达到最大,保持不 变,两峰的间隔几乎不变。

 $x \neq y$ 时,由于不对称性,造成了光谱特性很大的变化。当两者都为奇数时,出项比较对称的双峰, 峰值最高,两个峰分布在中心波长的两边。设 x + y = k,图9表示的是k取不同数值时的光谱特 性曲线。可见,两个峰之间的间距随着两者和的增 大而减小。和相等时,两峰的位置不变。

图 9 缺陷层厚度之和 k 取不同数值时的光谱曲线 Fig. 9 Optical performance of photonics crystal with different addition value of defect layer thickness

4 光子晶体滤光片的设计与制备

根据上述讨论结果,结合实际的应用需要,设计 并制备了星载铷原子钟上所用的一个双通道窄带滤 光片。星载铷原子钟是导航卫星上主要的时间频率 基准,而铷钟的关键部件光谱灯产生的光噪声是主 要的噪声源,因而需要利用滤光片进行抑制。

通过对铷光谱灯的发光光谱测试,可知星载铷 原子钟使用的两个抽运光对应的波长分别是 780 nm和794.7 nm,采用一个双通道滤光片抑制背 景噪声,两个通道分别对应两个波长。采用传统光 学薄膜设计方法,难以准确调整两个波长的相对位 置。而采用前面研究的光子晶体缺陷模的滤波特 性,则可以实现要求的指标。

设计技术指标如下:

1)透射峰的位置: $\lambda_1 = 780.0 \text{ nm}; \lambda_2 = 794.7 \text{ nm};$

- 2)带宽:Δλ <3 nm;
- 3)截止波段:700~900 nm;
- 4) 截至区透射率 T<2%。

根据上面的研究结果,把铷原子钟上所用的双

通道滤光片的基本结构设计为: $(HL)^{M_1} xL$ $(HL)^{N_y}L(HL)^{M_2}$,其中高折射率材料H为TiO₂, 低折射率材料L为SiO₂,基底材料为K9玻璃。为 了得到满足要求的双通道滤光片,必须对基本结构 中的参数N, M_1 , M_2 ,x,y进行选择。为了使得两个 透射峰对称,采取的设计是: $M_1 = M_2 = N$;x = y, 即滤光片的基本结构变为: $(HL)^N xL$ $(HL)^N xL$ $(HL)^N$ 。由于两个透射峰的两个中心为780 nm和 794.7 nm,所以在选择一维光子晶体的厚度时选择 的是对应的中心波长为787.3 nm。在周期数N的 选择方面,必须考虑滤光片的截止特性,一般情况下 N都要取大于4的值,而x的值则决定了两个通带 的相对位置。最终分别取N和x的值为5和3,即 设计结果为 $(HL)^5 3L(HL)^5 3L(HL)^5$ 。

上述设计得到的滤光片通带呈锯齿形,为了进 一步优化设计结果,采用了三个上述结构串联的方 式,最终得到的设计光谱图如图 10 所示。

采用美国 DENTON 公司的 Integrity39 全自动 离子辅助光学镀膜机进行双通道窄带滤光片的实际 镀制工作,采用电子枪蒸发两种氧化物镀膜材料,同 时利用离子束辅助。实验过程及参数为:基底先后 用纯度为 99.9%的丙酮和无水乙醇超声波各清洗 15 min,用专用清洁纸擦干后装入真空室;将真空度 抽至 2×10⁻³ Pa 后,加热到 120 ℃并保持 50 min, 开始镀膜;在镀膜之前用离子束轰击基底 10 min, 轰击时离子束的能量为 150~200 eV。镀膜时, SiO_2 和 TiO_2 的沉积速率分别为 0.5 nm/s 和 0.4 nm/s,基底温度为分别为 150 ℃和 175 ℃,离 子束能量为250~300 eV。利用 Lambda 900 光谱 仪测量所镀制的滤光片的透射率,图 11 为实际测量 的光谱曲线。实际镀制的滤光片在 780 nm 的透射 率为 49.95%,带宽为 2.41 nm;在 794.7 nm 处的 透射率为 48.52%,带宽为 2.34 nm。

图 11 双通道窄带滤光片实测光谱图

Fig. 11 Measured spectrum of dual peak thin film filters

5 结 论

1)单通道滤光片峰值位置的影响因素主要是缺陷层的厚度,峰值位置随缺陷层的厚度呈规律性变化。

2)双通道滤波片透射峰位置的主要影响因素有 周期数 M_1, M_2, N 和缺陷层厚度 x 和 y_o 根据实际情 况,一般应该取 $M_1 = M_2$,两透射峰的间隔随 N 的 增大而减小 $_o x = y$ 时,两个透射峰的位置比较对 称,且随缺陷层的厚度的增加向长波方向移动,并且 像单通道透射峰一样呈周期性移动,两者的周期数 相同 $_o x \neq y$ 时,光谱特性曲线随两个缺陷层厚度的 和而变化。

通过对二元一维光子晶体缺陷模的研究,总结 了一维光子晶体滤波特性的规律,为一维光子晶体 在滤波方面的应用提供了一定的理论基础。实际应 用表明,应用光子晶体技术,可以有效设计特殊要求 的滤光片。

参考文献

- 1 Yablonovitch E, Gmitter T J. Photonic band structure: the facecentered-cubic case [J]. Phys. Rev. Lett., 1989, 63 (18): 1950~1953
- 2 Yablonovitch E. Inhibited spontaneous emission in solid-state physica and electronics [J]. Phys. Rev. Lett., 1987, 58(20): 2059~2062
- 3 John S. Strong localization of photons in certain disordered dielectric superlathices [J]. Phys. Rev. Lett., 1987, 58(23): 2486~2489
- 4 Born M, Wolf E. Principles of Optics [M]. Pergamon, 1980, $67\!\sim\!80$
- 5 Zhang Wenfu, Fang Qiang, Cheng Yihua *et al.*. Narrow band interleaver based on one-dimensional photonic crystal with positive-negative index alternant multilayer [J]. Acta Optica Sinica, 2007, 27(9): 1695~1699 张文富,方 强,程益华等. 正负折射率交替一维光子晶体窄带

梳状滤波器[J]. 光学学报, 2007, **27**(9): 1695~1699

6 Liu Jing, Zheng Zhiqiang, Feng Zhuohong *et al.*. Tunable optical filter based on two-dimensional heterostructure photonic crystal

with neighboring dot-defects and curved waveguide [J]. Acta Optica Sinica, 2007, **27**(11): 2034~2037

刘 璟,郑志强,冯卓宏等. 二维异质结光子晶体中含近邻点缺陷的弯曲波导的可调谐滤波特性[J]. 光学学报,2007,**27**(11): 2034~2037

7 Meng Qingsheng, Ouyang Zhengbiao, Wang Jong C et al.. Mode types and their related properties of one-dimensional photonic crystal resonant cavity [J]. Acta Optica Sinica, 2007, 27(7): 1290~1294

孟庆生,欧阳征标,王仲淳等.一维光子晶体谐振腔的模式类型 及其性质[J].光学学报,2007,**27**(7):1290~1294

- 8 Yin Jianling, Huang Xuguang, Liu Songhao. Effect of structure disorder on band gap of eight-fold photonic quasicrystals [J]. *Chinese J. Lasers*, 2007, **34**(8): 1077~1080 殷建玲,黄旭光,刘颂豪. 结构无序对 8 重准晶光子晶体带隙特性的影响[J]. 中国激光, 2007, **34**(8): 1077~1080
- 9 Born M, Wolf E. Principles of Optics [M]. Yang Jiasun Transl. Beijing: Science Press, 1978. 197
 玻 恩,沃尔夫. 光学原理[M]. 杨葭孙译. 北京:科学出版社, 1978. 197
- 10 Kuang Cuifang, Zhang Zhifeng. Transfer matrix method for

analyzing properties of light propagation in 1-dimension photonic crystals [J]. Laser Journal, 2003, **24**(4): 38~39

匡萃方,张志峰. 传输矩阵法分析一维光子晶体的传光特性[J]. 激光杂志, 2003, **24**(4): 38~39

11 Shi Quan, Lin Xusheng, Cai Xuhong. Method to obtain the transmission characteristics of photonic crystal defects being asymmetrically confined [J]. Acta Optica Sinica, 2007, 27(4): 706~710

石 全,林旭升,蔡旭红 等.获得非对称约束光子晶体缺陷透射 特性的方法[J].光学学报,2007,27(4):706~710

- 12 Liu Hongkai. Study on polarization and defect mode of onedimensional photonic crystal [D]. Beijing, China Academy of Space Technology, 2006, 10 刘宏开. 一维光子晶体偏振特性和缺陷模研究[D]. 北京,中国 空间技术研究院,2006,10
- Liu Qineng. Effect of impurity absorption on one-dimensional photonic crystal defect mode [J]. Chinese J. Lasers, 2007, 34(6): 777~780 刘启能. 杂质吸收对一维光子晶体缺陷模的影响[J]. 中国激光,